Antiarrhythmic Drugs

Arrhythmia

- Heart condition where disturbances in
 - Pacemaker impulse formation
 - Contraction impulse conduction
 - Combination of the two

Results in rate and/or timing of contraction of heart muscle that is insufficient to maintain normal cardiac output (CO)

Arrhythmia /dysrhythmia: abnormality in the site of origin of impulse, rate, or conduction

arrhythmia

Causes of arrhythmia				
	arteriosclerosis			
$\left \right $	Coronary artery spasm			
-	Heart block			
	Myocardial ischemia			

Antiarrhythmic drugs

Most antiarrhythmic drugs are <u>pro-arrhythmic</u> (promote arrhythmia)
 They are classified according to <u>Vaughan William</u> into four classes according to their effects on the cardiac action potential

class	mechanism	action	notes
I	Na+ channel blocker	Change the slope of phase 0	Can abolish tachyarrhythmia caused by reentry circuit
II	β blocker	↓heart rate and conduction velocity	Can indirectly alter K and Ca conductance
III	K+ channel blocker	 ↑action potential duration (APD) or effective refractory period (ERP). 2.Delay repolarization. 	Inhibit reentry tachycardia
IV	Ca++ channel blocker	Slowing the rate of rise in phase 4 of SA node(slide 12)	↓conduction velocity in SA and AV node

Classification of antiarrhythmics (based on mechanisms of action)

Class I – membrane depressant drugs

blocker's of fast Na+ channels Subclass IA

> Cause moderate Phase 0 depression Prolong repolarization Increased duration of action potential.

Examples

<u>Quinidine</u>

Procainamide

Phenytoin

1st antiarrhythmic used, treat both atrial and ventricular arrhythmias, increases refractory period..

Quinidine blocks myocardia Na+ channel in the open state Reduces automaticity and maximal rate 0 phase depolarization In a frequency dependent manner

Procainamide increases refractory period

anticonvulsant that also works as antiarrhythmic similar to lidocaine.

Class II – β–adrenergic blockers Based on two major actions 1)blockade of myocardial β– adrenergic receptors 2)Direct membrane-stabilizing effects related to Na⁺ channel blockade

Example

Tocainide propranolol

Tocainide

Propranolol

causes both myocardial β adrenergic blockade and membrane-stabilizing effects **Slows SA node and ectopic** pacemaking Can block arrhythmias induced by exercise or apprehension **Other** β-adrenergic blockers have similar therapeutic effect..

Class III–Repolarization prolongators K+ channel blockers Developed because some patients negatively sensitive to Na channel blockers (they died!) Cause delay in repolarization and prolonged refractory period.

Examples

Bretylium Amiodarone

Bretylium Tosylate first developed to treat hypertension but found to also suppress ventricular fibrillation associated with myocardial infarction

Amiodarone

prolongs action potential by delaying K+ efflux but many other effects characteristic of other classes

Class IV – Ca²⁺ channel blockers

slow rate of AV-conduction in patients with atrial fibrillation

Examples Diltiazem Verapamil

blocks Na+ channels in addition to Ca^{2+;} also slows SA node in tachycardia

Fig. 1. Structural formula of verapamil hydrochloride.

DISOPYRAMIDE PHOSPHATE

Synthesis CILCN. triability . CR-CN CLICELS N. ICELLUN -DDr 3 - (Di-isopropylamics) athyl oblaride. 2 - Brorno Phonyl portidanc. acots nittile -DOI NONL. CONH: (DN 11,503, - KHIDANGINORAN KHAR KATHERSON Disopyramide